Testing symmetry in nonparametric regression models
نویسندگان
چکیده
In a recent paper Ahmad and Li (1996) proposed a new test for symmetry of the error distribution in linear regression models and proved asymptotic normality for the distribution of the corresponding test statistic under the null hypothesis and consistency under xed alternatives. The present paper has three purposes. On the one hand we derive the asymptotic distribution of the statistic considered by Ahmad and Li (1996) under xed alternatives and demonstrate that asymptotic normality is still valid but with a di erent rate of convergence. On the other hand we generalize Ahmad and Li's (1996) test of a symmetric error distribution to general nonparametric regression models. Moreover, it is also demonstrated that a bootstrap version of the new test for symmetry has good nite sample properties. AMS Classi cation: Primary 62G05
منابع مشابه
Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملTesting for Symmetric Error Distribution in Nonparametric Regression Models
For the problem of testing symmetry of the error distribution in a nonparametric regression model, we investigate the asymptotic properties of the difference between the two empirical distribution functions of estimated residuals and their counterparts with opposite signs. The weak convergence of the difference process to a Gaussian process is shown. The covariance structure of this process dep...
متن کاملDifferenced-Based Double Shrinking in Partial Linear Models
Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...
متن کاملModel Specification Testing in Nonparametric Time Series Regression with Nonstationarity
This paper considers a class of nonparametric autoregression models with nonstationarity in the mean and then a class of nonparametric time series regression models with nonstationarity in both the conditional mean and conditional variance. For the nonparametric autoregression case, we propose a nonparametric unit–root test for the conditional mean. For the nonparametric time series regression ...
متن کاملNonparametric and semiparametric regression analysis of group testing samples
This paper develops a general methodology of nonparametric and semiparametric regression for group testing data, relating group testing responses to covariates at individual level. We fit nonparametric and semiparametric models and obtain estimators of the parameters and the nonparametric regression function by maximizing penalized likelihood function. For implementation, we develop a modified ...
متن کامل